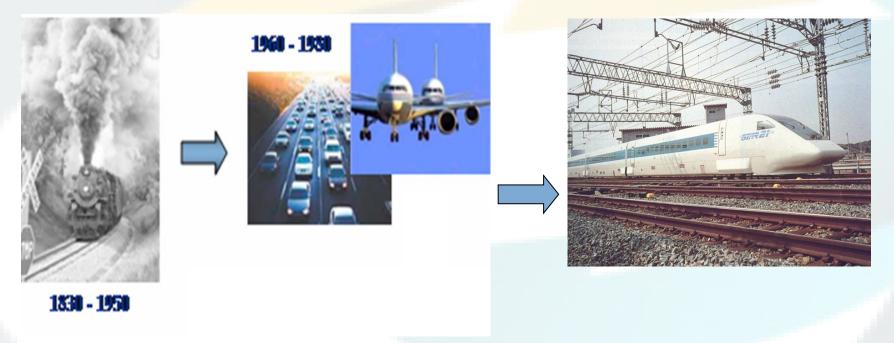
# An Overview of Railway Transportation Systems for High and Medium Steep Gradients in Operation and Under-construction Worldwide (2019 Data)



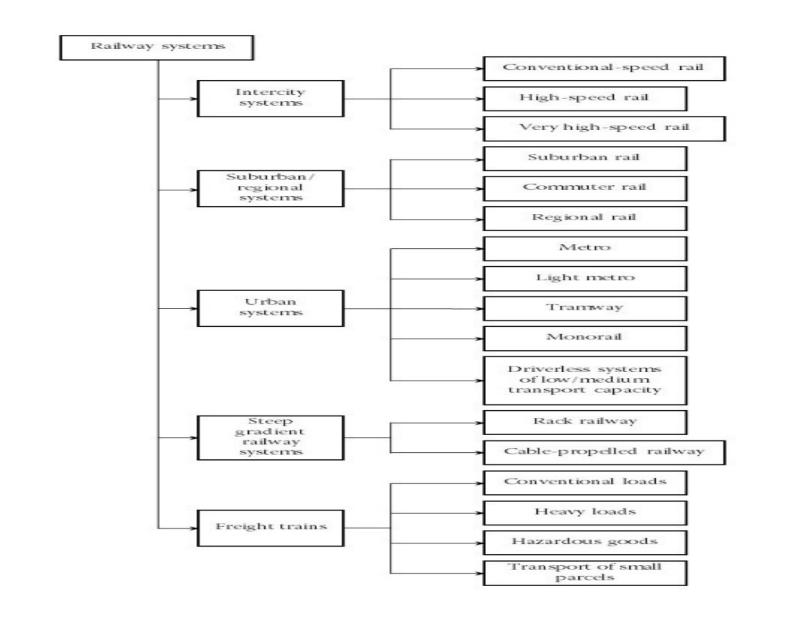
Prof. Christos Pyrgidis, Aristotle University of Thessaloniki, Greece



### The railway as a transport system


The "railway" is a terrestrial mass transport system. Trains move on their own (diesel traction) or remotely transmitted power (electric traction) on a dedicated steel way corridor defined by two parallel rails

#### Passengers and goods


- Transportation of passengers: 1500 km (2439 km, China)
- Transportation of goods > 3000 km(10000-12000 km, Europe-China)

It serves different distance transfers in all kinds of environment (urban, suburban, peri-urban, regional, interurban)

# The railway is the only technology that reached its peak, then dropped to nadir and peaked again



The railway was the means of transport that set the basis for the development of the inland in all continents



# Railways - Characteristic speeds

| Characteristic speeds                    | Maximum<br>value<br>(km/h) | Country                  |  |  |
|------------------------------------------|----------------------------|--------------------------|--|--|
| Roll <mark>ing stock design speed</mark> | 400                        | China                    |  |  |
| Commercial speed                         | 304.1                      | China                    |  |  |
| Cruiser (forward) speed                  | 350<br>(320)               | China<br>(Japan, Europe) |  |  |
| Track design speed                       | 400                        | Spain                    |  |  |
| Speed record                             | 574.8                      | France (2007)            |  |  |



# Objective of the work and application field

# Railway systems that (can) operate, in a great part of their route, on gradients higher than 5%

- Definition and classification of the systems
- Identification and recording of the systems that are operational at a global level
- Registration in databases, of their constructional and operational characteristics
- Analysis and statistical elaboration of the data
- Future trends
- Reference date: End 2019

- Rack Railways
- Cable-propelled Railways
- Monorails (medium slopes)



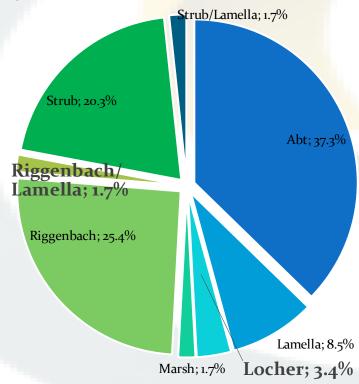
## Rack Railways

Two conventional rails plus a toothed rack rail in-between

Classification according to:

- Rack system
  Riggenbach, Abt, Strub, Locher, Marsh
  or Lamella
- Type of adhesion along the line

  Purely racked, Mixed adhesion




Rack systems





59 Systems in operation (2019 data)



| CONTINENT      | COUNTRY           | PURELY<br>RACKED<br>SYSTEMS | MIXED<br>ADHESION<br>SYSTEMS | TOTAL |  |
|----------------|-------------------|-----------------------------|------------------------------|-------|--|
|                | Austria           | 2                           | 1                            | 3     |  |
|                | France            | 3                           | 2                            | 5     |  |
|                | Germany           | 2                           | 2                            | 4     |  |
|                | Switzerland       | 13                          | 11                           | 24    |  |
|                | Greece            | 0                           | 1                            | Ī     |  |
| EUROPE(48)     | United<br>Kingdom | 1                           | O                            | 1     |  |
| LOROT L(40)    | Spain             | 0                           | 2                            | 2     |  |
|                | Italy             | 2                           | 1                            | 3     |  |
|                | Hungary           | 1                           | 0                            | 1     |  |
|                | Russia            | 1                           | 0                            | 1     |  |
|                | Slovakia          | 1                           | 1                            | 2     |  |
|                | Czech<br>Republic | 0                           | 1                            | 1     |  |
| ANTERNO        | Brazil            | 1                           | 1                            | 2     |  |
| AMERICA<br>(6) | United States     | 3                           | 0                            | 3     |  |
| <b>,</b> ,     | Panama            | 0                           | 1                            | 1     |  |
|                | India             | 0                           | 1                            | 1     |  |
| ASIA (3)       | Indonesia         | 1                           | 0                            | 1     |  |
|                | Japan             | 0                           | 1                            | 1     |  |
| AUSTRALIA (2)  | Australia         | 1                           | 1                            | 2     |  |
| TOTAL          |                   | 32                          | 27                           | 59    |  |

# **Rack Railways**



- First rack railway opened in 1868 on Mount Washington, USA
- Only 3 new rack railways during the last 35 years
- No systems under construction



## Rack Railways

#### Constructional & Operational Features

| Route length                                                     | Usually 4.5-6km, S <sub>max</sub> = 19,09km     |  |  |  |  |  |
|------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Track gauge                                                      | Usually metric gauge (1000mm or 1067mm)         |  |  |  |  |  |
| Longitudinal gradient                                            | >5%, usually i= 20-25% , i <sub>max</sub> = 48% |  |  |  |  |  |
| Traction system Diesel, bi0-diesel, steam, usu electric (67.2%). |                                                 |  |  |  |  |  |
| Commercial speed                                                 | 7.5–20km/h, V <sub>max</sub> = 40km/h           |  |  |  |  |  |
| Transportation system capacity                                   | Low/medium transportation system capacity       |  |  |  |  |  |

- Infrastructure cost: 10-15 million €/km (single track)
- Mostly used for passenger transport
- Mainly directed towards leisure activities, mountainous areas

## Cable-propelled Railways

Moving with the aid of a cable that rolls over pulleys mounted on track





#### Classification:

- Funiculars (non-detachable cable-propelled vehicles for steep gradients)
- Cable cars (detachable cablepropelled vehicles for steep gradients)
- Inclined elevators



# Cable-propelled Railways-Funiculars

248 funiculars in operation (2019 data)

50 of them in Switzerland

| ONTINENT                  | COUNTRY        | FUNICULARS |
|---------------------------|----------------|------------|
|                           | ENGLAND        | 13         |
|                           | AZERBAIJAN     | 1          |
|                           | AUSTRIA        | 11         |
|                           | FRANCE         | 16         |
|                           | GERMANY        | 14         |
|                           | GEORGIA        | 1          |
|                           | SWITZERLAND    | 50         |
|                           | GREECE         | 1          |
|                           | SPAIN          | 11         |
|                           | ITALY          | 21         |
|                           | CROATIA        | 1          |
|                           | LITHOUANIA     | 2          |
| UROPE (175)               | LUXEMBURG      | 1          |
|                           | NORWAY         | 2          |
|                           | WALES          | 5          |
|                           | HUNGARY        | 1          |
|                           | UKRAINE        | 1          |
|                           | POLAND         | 3          |
|                           | PORTUGAL       | 8          |
|                           | ROMANIA        | 1          |
|                           | RUSSIA         | 2          |
|                           | SLOVAKIA       | 1          |
|                           | SWEDEN         | 2          |
|                           | TURKEY         | 3          |
|                           | CZECH REPUBLIC | 3          |
| ORTH AMERICA (14)         | UNITED STATES  | 12         |
|                           | CANADA         | 2          |
| OUTH AMERICA (18)         | ARGENTINA      | 1          |
|                           | BRAZIL         | 6          |
|                           | COLOMBIA       | 1          |
|                           | MEXICO         | 1          |
|                           | CHILE          | 10         |
| SIA (39)                  | VIETNAM        | 2          |
| 31A (33)                  | JAPAN          | 22         |
|                           | INDIA          | 2          |
|                           | ISRAEL         | 1          |
|                           | CHINA          | 4          |
|                           | LEBANON        | 1          |
|                           | MALAISIA       | 1          |
|                           | THAILAND       | 3          |
|                           |                | 2          |
|                           | HONG KONG      |            |
| FRICA (1)<br>USTRALIA (1) | SOUTH AFRICA   | 1          |
|                           | NEW ZEALAND    | 1          |
| OTAL                      |                | 248        |

## Cable-propelled Railways- Funiculars



- First funicular opened in 1862 in Lyon, France
- 14 new funiculars during the last decade
- 1 funicular under construction (Qiddiya Project, Saudi Arabia)



# Cable-propelled Railways- Funiculars

#### Three main superstructure types:


Two-rail superstructure with passing loop



Three-rail superstructure with passing loop



Four-rail superstructure configuration





## Cable-propelled Railways- Funiculars

#### Constructional & Operational Features

| Route length                   | Usually S<1000m, S <sub>min</sub> = 39m, S <sub>max</sub> = 4827m |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Track gauge                    | Usually metric gauge (1000mm or 1067mm)                           |  |  |  |  |
| Longitudinal gradient          | usually i= 30-50% , i <sub>max</sub> = 110%                       |  |  |  |  |
| Commercial speed               | 7.2–14.4km/h, V <sub>max</sub> = 50.4km/h                         |  |  |  |  |
| Transportation system capacity | 1000-2000 passengers/hour/direction                               |  |  |  |  |

- Implementation cost: 20-30million €/km (infrastructure & rolling stock)
- Used for passenger transport
- Short distances with continuous gradients



## Cable-propelled Railways-Inclined Elevators

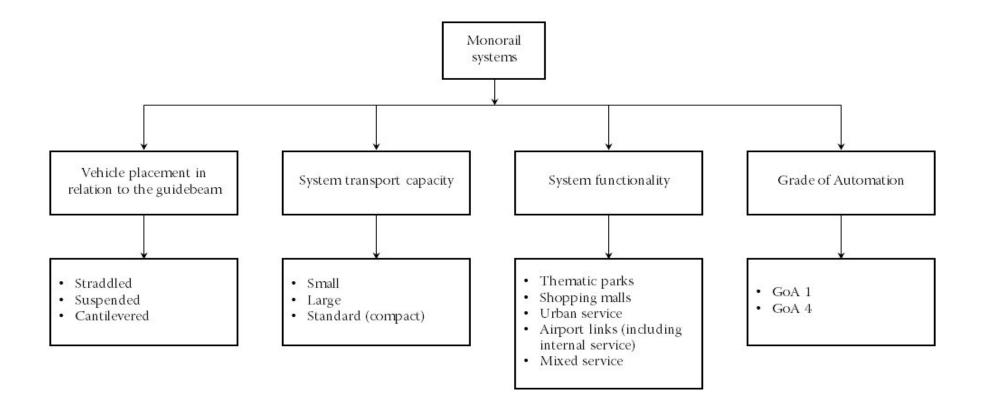
- Uses a single vehicle, balanced by a counterweight
- Ideal for large continuous and very high gradients (50%-70%)
- Private use in residences (hotels, beach houses, cabins, etc.)
- Low transport system capacity (200–700 passengers/hour/direction)



#### Monorails

The monorail is an electrified light rail passenger transport system. This transport mode (in a typical manner, an articulated train) is formed of a small number of vehicles (2-6 and rarely 8) and in most cases it moves via rubber-tired wheels, on an elevated permanent way (guideway). The guideway is essentially a beam, which takes over the traffic loads and guides and supports the vehicles (guide - beam)

**Small monorails** 


Large monorails Standard monorails







#### **Monorails-Classification**



#### **Monorails-Classification**

#### **Straddled**



#### **Suspended**





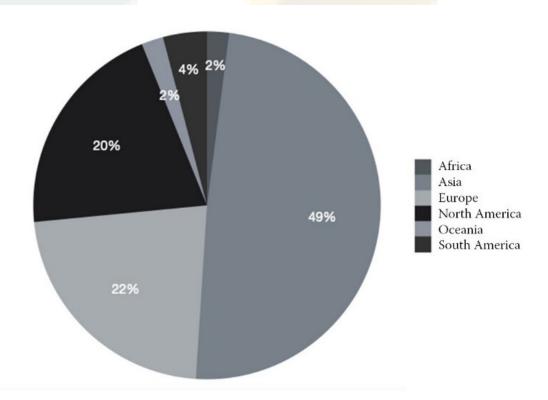


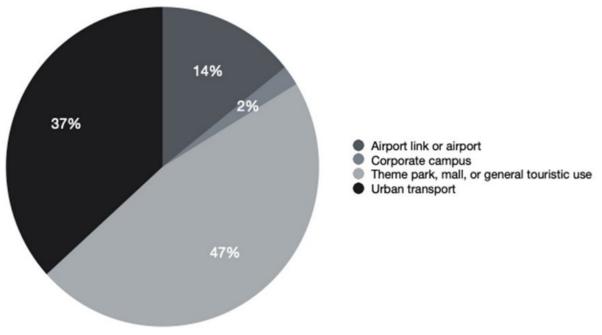








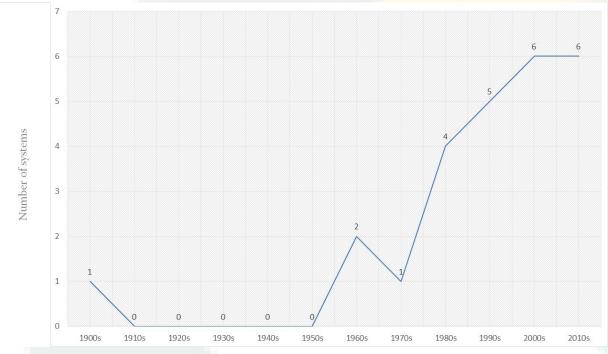




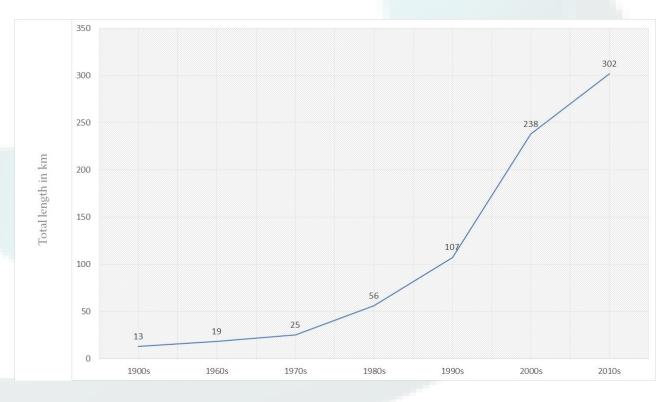

#### **Monorails- Evolution**

49 Systems in operation (2019 data) + 1 (2020)






41(+1) straddled)
Total length approximately: 410km




## **Monorails- Evolution**



#### 25 urban use systems (300 km)

#### 8 systems under construction





- •Route length: 1.5-12 km (When used for public transport, its length may be significantly longer-55.5 km)
- **Maximum running speed**: 60-100km/h
- **Commercial speed:** 15-40 km/h
- •Distance between successive stops: 800-1,500m
- **Longitudinal gradient : 0-10**% (20%)
- **Implementation cost**: 30-90 mil € / km (infrastructure + rolling stock)
- **Frequency:** 3-15 min (min 60 sec)
- •Maximum transportation work (pphpd): Small systems 2,000, Large systems: 12,500, Standard systems 4,800 (20,000-25,000 pphpd)
- •Driverless or not
- Axle load: 8-11t

Area occupied on the ground by the pylons: 1-1.5m x 1-1.5m Usually pillars are constructed inside a 2-3 m wide green zone





When there is a need for a transport mode that will serve movement within amusement parks, zoos, and so on

For the transportation of passengers over small distances, and in areas that are particularly interesting in terms of their view

For the connection of urban areas of the same altitude, where there is a natural barrier hindering their connection (e.g., water)

In recent years, monorails are increasingly used not only for recreational purposes but also for urban public transport, for serving connection with airports, movement within shopping malls and so on

| Name                     |        | Continent | Country               | City        | Expected<br>Date                         | Length | Placement | Type               | GoA         |
|--------------------------|--------|-----------|-----------------------|-------------|------------------------------------------|--------|-----------|--------------------|-------------|
| Cairo Mon                | orail  | Africa    | Egypt                 | Cairo       | 2023                                     | 96     | Straddled | Urban Service      | Driverless  |
| Kai Tak mor              | norail | Asia      | China                 | Hong Kong   | 2023                                     | 9.0    | Straddled | Urban service      | n.d.        |
| Wuhu Me                  | etro   | Asia      | China                 | Wuhu        | 2020                                     | 46.2   | Straddled | Urban service      | With Driver |
| Zunyi Rap<br>Transit Sys |        | Asia      | China                 | Zunyi       | n.d.                                     | 50.0   | n.d.      | Urban service      | n.d.        |
| QOM Mono<br>Line M       |        | Asia      | Iran                  | Qom         | n.d.                                     | 7.0    | Straddled | Urban service      | With Driver |
| Yellow Li                | ine    | Asia      | Thailand              | Bangkok     | 2022                                     | 30.4   | Straddled | Urban service      | With Driver |
| MRTA Pink<br>"2020"      |        | Asia      | Thailand              | Bangkok     | 2021                                     | 34.5   | Straddled | Urban service      | Driverless  |
| Marconi Ex               | press  | Europe    | Italy                 | Bologna     | In operation<br>from<br>November<br>2020 | 5.0    | Straddled | Airport<br>service | Driverless  |
| Krasnogo<br>Monora       |        | Europe    | Russian<br>Federation | Krasnogorsk | 2020                                     | 13.0   | Suspended | Urban service      | Driverless  |



- Construction of rack railways has virtually halted Evolution of adhesion railways
- Funiculars remain in consideration as an alternative for cases of a complex landscape
- Inclined elevators remain a popular solution for very steep gradients and very short distances
- In recent years, monorails are increasingly used not only for recreational purposes but also for urban public transport, for serving connection with airports, movement within shopping malls and so on

#### The champions in gradient







Stoosbahn–Funicular (110%) Lotte World Monorail (20%)

